

TWO PHENOLIC D:A-friedo-23,24-DINOROLEANANE TRITERPENES FROM KOKOONA ZEYLANICA*

CHANDRA B. GAMLATH and A.A. LESLIE GUNATILAKA†

Department of Chemistry, University of Peradeniya, Peradeniya, Sri Lanka

(Received 17 December 1987)

Key Word Index—*Kokoona zeylanica*; Celastraceae; phenolic D:A-friedo-23,24-dinoroleananes; 23-nor-6-oxopristimerol; 23-nor-6-oxodemethylpristimerol; demethylzeylasterol; structure elucidation; biosynthesis.

Abstract—Two novel phenolic *dinor*-triterpenes isolated from *Kokoona zeylanica* have been identified as 23-nor-6-oxopristimerol and 23-nor-6-oxodemethylpristimerol on the basis of spectroscopic evidence and chemical interconversions. The biosynthetic significance of the co-occurrence of phenolic D:A-friedo-23, 24-dinoroleananes with phenolic and quinone-methide triterpenes in *K. zeylanica* is discussed.

INTRODUCTION

The phenolic-D:A-friedo-nor-oleananes form a unique group of triterpenoids represented by zeylasterone (4), which was first encountered in *Kokoona zeylanica* [2]. Subsequently four additional phenolic triterpenoids, zeylasterol (5), demethylzeylasterone (6), demethylzeylasterol (7) and 23-oxoisopristimene III (9) along with the quinone-methides pristimerin (10) and celastrol (11) were isolated from *K. zeylanica* and kokum soap [3-5]. A recent study [6] has revealed the presence of some of these phenolic triterpenoids in *K. reflexa* and *Celastrus paniculatus* but not in *Cassine balae* (*Elaeodendron balae*), *Gymnosporia emarginata* and *Pleurostylia opposita*, all belonging to the family Celastraceae. We now report on the isolation from *K. zeylanica* of the first two natural phenolic D:A-friedo-23, 24-dinoroleanane triterpenoids, 23-nor-6-oxopristimerol (1) and 23-nor-6-oxodemethylpristimerol (2).

RESULTS AND DISCUSSION

The ethyl acetate extract of the root outer bark of *K. zeylanica* afforded three yellow compounds. One of these was identified as demethylzeylasterol (7) [3]. The remaining two were new natural products and their structures were elucidated as 23-nor-6-oxopristimerol (1) and 23-nor-6-oxodemethylpristimerol (2).

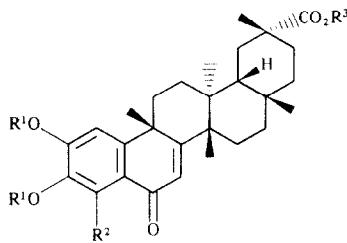
23-nor-6-Oxopristimerol gave a positive response to both the Liebermann-Burchard test and the neutral ferric chloride test indicating it to be a phenolic triterpene [2]. IR bands at 3500-3000, 1720 and 1630 cm^{-1} indicated the presence of hydroxy groups, a saturated ester carbonyl group and an α,β -unsaturated ketone group, respectively. The ^1H NMR spectrum was similar to that of zeylasterone (4) except that an additional 1H singlet was present in the aromatic region at δ 7.80 which was

attributed to H-4 (Table 1). It had comparable chemical shift values to those of *peri*-protons of related systems (e.g. xanthones, flavonoids etc.) [7]. The ^1H NMR spectrum of 1 also indicated the presence of five methyl groups attached to quaternary centres and a carbomethoxy group. In its MS, 23-nor-6-oxopristimerol (1) showed a significant peak at m/z 204 probably due to the trihydroxynaphthalene ion (12) formed as a result of a retro-Diels-Alder fragmentation of ring C (Scheme 1).

Methylation of 23-nor-6-oxopristimerol with excess diazomethane in ether afforded the dimethyl derivative 3, $\text{C}_{31}\text{H}_{42}\text{O}_5$. The IR spectrum of this compound contained no absorptions due to hydroxy groups and the ^1H NMR spectrum was almost superimposable on that of 1 except that two additional 3H singlets were present in the methoxy region at δ 3.94 and 3.96 [cf. ^1H NMR data of trimethylzeylasterone (8)] (Table 1). As for the parent triterpene, the MS of 3 showed a significant peak at m/z 232 corresponding probably to the ion 13 (Scheme 1). The ^{13}C NMR spectrum of 3 (Table 2) provided additional evidence for the proposed structure. The signals were assigned with the help of DEPT spectra and by comparison with ^{13}C NMR shifts of zeylasterone (4), whose assignments have recently been revised from that reported previously [2-5] using ^1H - ^{13}C shift correlated spectra [C. B. Gamlath, A. A. L. Gunatilaka, T. Tezuka and T. Kikuchi, unpublished results].

The more polar phenolic triterpene gave positive responses to both the Liebermann-Burchard test and the neutral ferric chloride test for phenolic triterpenes [2]. The MS with $[\text{M}]^+$ at m/z 452 (14 amu less than the $[\text{M}]^+$ of 1) and the ^1H NMR spectrum which was almost superimposable on that of 1 except for the absence of the signal due to $20\alpha\text{-CO}_2\text{Me}$ (Table 1) indicated it to be the demethyl derivative of 1, namely 23-nor-6-oxodemethylpristimerol (2). Methylation of 2 gave its trimethyl derivative which was identical with dimethyl 23-nor-6-oxopristimerol (3) obtained above.

It was possible that 23-nor-6-oxopristimerol (1) and 23-nor-6-oxodemethylpristimerol (2) were artefacts formed as a result of decarboxylation of the enolized β -keto acids


* Part 14 in the series Studies on Terpenoids and Steroids; For Part 13, see ref. [1].

† Author to whom correspondence should be addressed.

Table 1. ^1H NMR spectral data of some phenolic triterpenoids (60 MHz, CDCl_3 , TMS as int. standard)

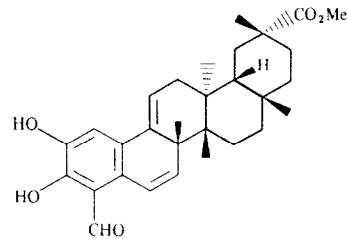
Compound	H-1	H-4	H-7	Me-9	Me-13	Me-14	Me-17	Me- 20β	CO_2Me -4	CHO-4	CO_2Me - 20α	$(\text{OMe})_2$ -2,3
1	7.00	7.80	6.36	1.53	1.28	0.53	1.10	1.20	—	—	3.53	—
2	6.91	7.43	6.28	1.50	1.28	0.63	1.11	1.21	—	—	—	—
3*	6.89	7.55	6.36	1.58	1.32	0.58	1.11	1.17	—	—	3.53	3.94, 3.96
4	7.35	—	6.48	1.35	1.34	0.54	1.12	1.18	—	—	3.54	—
7	7.23	—	6.33	1.56	1.31	0.73	1.11	1.20	—	11.0	3.53	—
8	6.95	—	6.22	1.60	1.32	0.60	1.11	1.17	3.93	—	3.53	3.82, 3.93

* Recorded at 500 MHz.

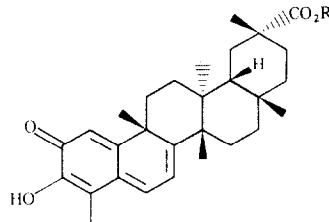
1 $\text{R}^1 = \text{R}^2 = \text{H}; \text{R}^3 = \text{Me}$

2 $\text{R}^1 = \text{R}^2 = \text{R}^3 = \text{H}$

3 $\text{R}^1 = \text{R}^3 = \text{Me}; \text{R}^2 = \text{H}$


4 $\text{R}^1 = \text{H}; \text{R}^2 = \text{CO}_2\text{H}; \text{R}^3 = \text{Me}$

5 $\text{R}^1 = \text{H}; \text{R}^2 = \text{CHO}; \text{R}^3 = \text{Me}$


6 $\text{R}^1 = \text{R}^3 = \text{H}; \text{R}^2 = \text{CO}_2\text{H}$

7 $\text{R}^1 = \text{R}^3 = \text{H}; \text{R}^2 = \text{CHO}$

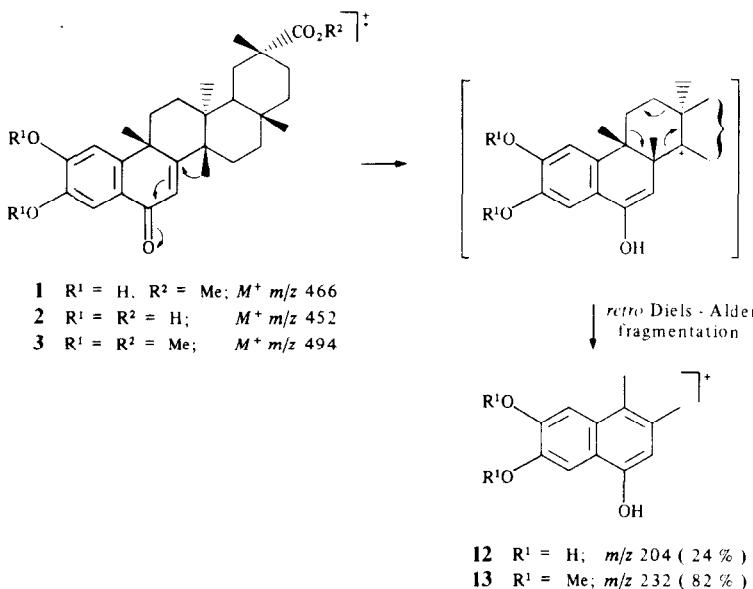
8 $\text{R}^1 = \text{R}^3 = \text{Me}; \text{R}^2 = \text{CO}_2\text{Me}$

9

10 $\text{R} = \text{Me}$

11 $\text{R} = \text{H}$

4 and **6**, respectively, during extraction with hot ethyl acetate which can be slightly acidic. However, this possibility was ruled out as treatment of **4** with hot ethyl acetate even for a prolonged period did not afford even a trace amount of **1** (TLC control).


This constitutes the first report of the natural occurrence of phenolic D:A-friedo-23, 24-dinoroleanane triterpenes and is significant as these co-occur with quinone-methide and phenolic triterpenoids in *K. zeylanica*. Four pathways have been postulated for the biosynthetic origin of quinone-methide triterpenoids and their biosynthetic relationship with phenolic triterpenoids [2, 8-10]. Oxidative decarboxylation of the corresponding quinone-methide triterpenoids (**10** and **11**) or phenolic triterpenoids (**4** and **6**) would yield 23-nor-6-oxopristimerol (**1**) and 23-nor-6-oxodemethylpristimerol (**2**) as depicted in Scheme 2.

EXPERIMENTAL

General. The general experimental details were the same as those described previously [2]. IR: KBr; Optical rotations: 27° , CHCl_3 ; ^1H NMR: CDCl_3 , 60 MHz unless otherwise stated, TMS as int. ref. ^{13}C NMR: 75 MHz. Multiplicity of carbon signals established by using DEPT measurements. Petrol refers to the fraction bp 60-80°.

Extraction of *K. zeylanica* outer root bark. The dried and powdered root outer bark (0.5 kg) of *K. zeylanica* collected at Kanneliya rain forest, Sri Lanka was successively and exhaustively extracted with hot petrol, C_6H_6 and EtOAc. Investigation of the hot petrol and C_6H_6 extracts have been reported previously [5]. The hot EtOAc extract on evapn afforded a black semisolid (4.7 g, 0.94%).

Isolation of 23-nor-6-oxopristimerol (1). The EtOAc extract (4.0 g) was chromatographed over a column of silica gel (mesh 70-230) made up in CHCl_3 and eluted with CHCl_3 containing

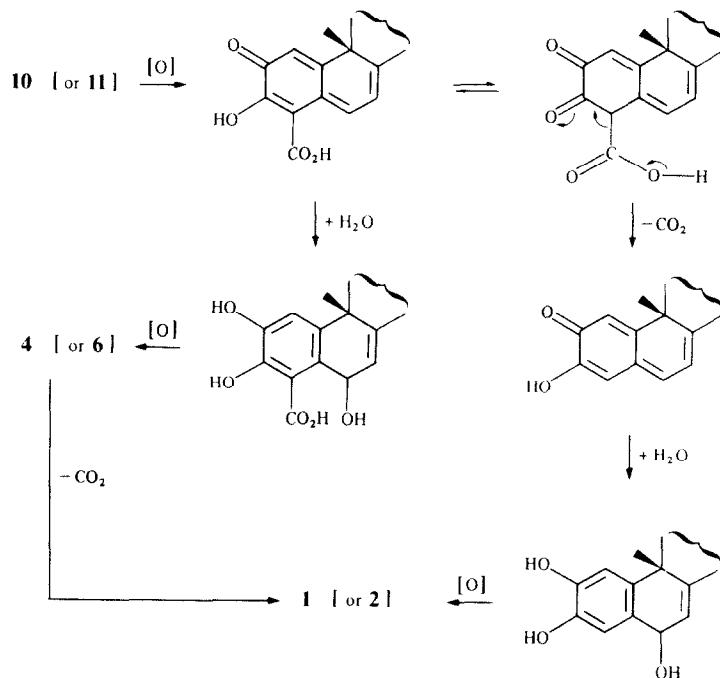
Scheme 1. Mass spectral fragmentation of triterpenoids 1-3.

Table 2. ^{13}C NMR spectral data of dimethyl 23-nor-6-oxopristimerol (3) and zeylasterone (4) (75 MHz, $CDCl_3$, TMS as int. standard)

C	3	4*	C	3	4*	C	3	4*
1	106.8†	113.8	11	33.8	34.4	21	29.8	29.84
2	147.8	152.9‡	12	29.8	29.78	22	34.8	34.9
3	150.0	153.5‡	13	39.5	39.7	23	—	173.8
4	106.7†	111.4	14	45.2	45.6	25	36.5	36.8
5	123.6	119.5	15	28.9	28.6	26	20.5	20.2
6	184.7	188.1	16	36.4	36.2	27	18.2	18.3
7	124.4	124.4	17	30.5	30.6	28	31.6	31.6
8	174.6	179.8	18	44.4	44.3	29	178.8	178.7
9	40.5	42.9	19	31.0	30.9	30	32.6	32.7
10	153.2	155.6	20	40.0	40.5	CO_2Me $(OMe)_2$	51.6	51.6

* Assignments are based on 1H - ^{13}C shift correlated spectra (C. B. Gamlath, A.A.L. Gunatilaka, T. Tezuka and T. Kikuchi, unpublished results).

†‡ May be interchanged in any column.


increasing amounts of MeOH. The fraction eluted with 1% MeOH in $CHCl_3$ was further purified by prep. TLC (silica gel, MeOH- $CHCl_3-C_6H_6$ 2:96:2) to yield 23-nor-6-oxopristimerol as a pale yellow solid (45 mg, 0.009%), mp 135-138°, $(\alpha)_D^{27} -74.9^\circ$ IR ν_{max} cm^{-1} 3500-3000, 2925, 1720, 1630, 1570, 1510, 1455, 1370, 1290, 1210, 875 and 750; 1H NMR: see Table 1; MS (rel. int.) m/z : 466 [M^+] (45), $(C_{29}H_{38}O_5)$, 451 (18) $(C_{28}H_{35}O_5)$, 271 (13) $(C_{17}H_{31}O_3)$, 243 (14) $(C_{15}H_{35}O_3)$, 217 (23) $(C_{13}H_{13}O_3)$, 204 (100) $(C_{12}H_{12}O_3)$ and 189 (12) $(C_{11}H_9O_3)$; $[M]^+$ 466.27515. $C_{29}H_{35}O_5$ requires 466.27192.

Isolation of demethylzeylasterol (7). The fraction eluted with 3% MeOH in $CHCl_3$ on further purification by prep. TLC yielded demethylzeylasterol (63 mg, 0.012%) identical with an authentic sample [5]. See Table 1 for 1H NMR data.

Isolation of 23-nor-6-oxodemethylpristimerol (2). The fraction eluted with 5% MeOH in $CHCl_3$ on further purification by prep.

TLC (silica gel, MeOH- $CHCl_3-C_6H_6$ 1:8:1) afforded 23-nor-6-oxodemethylpristimerol as a yellow solid (32 mg, 0.0064%), mp 228-230°, $(\alpha)_D^{27} -102.0^\circ$ UV λ_{max}^{HOH} nm (log ϵ): 203 (4.29), 226 (3.96), 254 (4.05), 298 (3.70) and 335 (3.71); IR ν_{max} cm^{-1} 3500-3050, 2900, 1710, 1620, 1570, 1500, 1455, 1370, 1290 and 895; 1H and ^{13}C NMR: see Tables 1 and 2, respectively; MS m/z (rel. int.) 452 [M^+] (4), 437(1), 271(2), 243(4), 204(24), 149(8) and 83(100).

Methylation of 23-nor-6-oxopristimerol. 23-nor-6-Oxopristimerol (1) (17.5 mg) dissolved in Et_2O (2.5 ml) was treated with excess ethereal CH_2N_2 overnight. Removal of solvent and subsequent purification of the product by prep. TLC (silica gel, $CHCl_3$ -MeOH 19:1) afforded dimethyl-23-nor-6-oxopristimerol (3) as a pale yellow semi-solid (17 mg) which resisted crystallization; IR ν_{max} cm^{-1} 2900, 1720, 1640, 1590, 1500, 1450, 1410, 1360, 1290, 1250, 1210, 1145, 1050, and 860; 1H

Scheme 2. Possible biosynthetic relationship of phenolic and quinone-methide triterpenoids of *K. zeylanica*.

and ¹³C NMR; see Tables 1 and 2, respectively; MS *m/z* (rel. int.) 494 [M]⁺ (74) (C₃₁H₄₂O₅), 479 [M - Me]⁺ (52) (C₃₀H₃₉O₅), 297 (10) (C₁₉H₂₁O₃), 272 (16) (C₁₇H₂₀O₃), 245 (23) (C₁₅H₁₇O₃), 232 (82) (C₁₄H₁₆O₃), 141 (54) (C₈H₁₃O₂); [M]⁺ 494.30712. C₃₁H₄₂O₅ requires 494.30699.

Methylation of 23-nor-6-oxodemethylpristimerol. 23-nor-6-Oxodemethylpristimerol (25 mg) was methylated as above to yield dimethyl-23-nor-6-oxopristimerol (**3**) (24 mg), identical (co-TLC, Co-IR and ¹H NMR) with the above obtained sample.

Acknowledgements—We thank Prof. Atta-ur-Rahman (H. E. J. Research Institute of Chemistry, University of Karachi, Pakistan) and Prof. T. Kikuchi (Toyama Medical and Pharmaceutical University, Toyama, Japan) for MS data; Miss Stina-britt Nilsson (Bio-Carb AB, Lund, Sweden), for ¹H NMR (500 MHz), ¹³C NMR and FAB MS data; Prof. S. Balasubramanian for identification of plant material; Ms V. B. Ratnayake, P. Leanage and P. Rajanathan for technical assistance; Mrs S. C. Weerasekera for typing the manuscript; International Foundation for Science (Sweden) and Natural Resources, Energy and Science Authority (Sri Lanka) for financial assistance.

REFERENCES

1. Gamlath, C. B., Gunatilaka, A. A. L. and Schlemper, E. O. (1988) *J. Chem. Soc. Chem. Comm.* 249.
2. Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1983) *J. Chem. Soc. Perkin Trans I* 2845.
3. Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1983) *Tetrahedron Letters* **24**, 2025.
4. Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1983) *Tetrahedron Letters* **24**, 2799.
5. Gamlath, C. B., Gunaherath, G. M. K. B. and Gunatilaka, A. A. L. (1987) *J. Chem. Soc. Perkin Trans I* 2849.
6. Gamlath, C. B., Gunatilaka, A. A. L. and Balasubramanian, S. (1988) *J. Chem. Soc. Pakistan* (in press).
7. Gunatilaka, A. A. L., Balasubramanian, S. and Kumar, V. (1979), *Phytochemistry* **18**, 182.
8. Kutney, J. P., Beale, W. H., Salisbury, P. J., Stuart, K. L., Worth, B. R., Townsley, P. M., Chalmers, W. T. and Jacoli, G. G. (1981) *Phytochemistry* **20**, 653.
9. Marini-Bettolo, G. B. (1979) *Rev. Latinoam. Quim.* **10**, 97.
10. Gonzalez, A. G., Fraga, B. M., Gonzalez, P., Gonzalez, C. M., Ravelo, A. G., Ferro, E., Dominguez, X. A., Martinez, M. A., Perales, A. and Fayos, J. (1983) *J. Org. Chem.* **28**, 3759.